
Secure Key Distribution Over MANET : A
Cryptographic Approach

Vikas Kumar Rana1, Rajneesh Gujral2

1,2Department of CSE, M.M. University, Ambala

Abstract— A mobile ad hoc network (MANET) is self-
organizing, dynamic topology network, which is formed by a
collection of mobile nodes through radio links. MANETs enable
wireless communication between mobile devices without
relying on a fixed infrastructure. Hence, routing in dynamic
network is a new challenge. We used various routing
algorithms for smooth exchange of information between mobile
nodes. Generally we imply security on all the nodes of the
network. But this causes wastage of time and cost. This paper
proposes that first we have to find out the shortest path and
then imply the security in multicast routing. The routing is
done with the help of GDH and the Encryption and Decryption
of data is done with the help of a new Cryptographic technique
that i have proposed in this paper. This proposed scheme will
improve the performance of the network such as delay and
packet delivery ratio than traditional routing algorithms.

Keywords— mobile ad hoc network , group key management,
multicast, GDH, cryptography.

I. INTRODUCTION
Mobile ad hoc network (MANET) consists of nodes which
are connected by wireless links, where each node
communicates with other nodes directly or indirectly
through intermediate nodes. Thus, all nodes in a MANET
basically function as mobile routers participating in some
routing protocol required for deciding and maintaining the
routes. Routing in MANETs is challenging since there is no
central coordinator that manage routing decisions. Routing
is one of the key issues in MANETs due to their highly
dynamic and distributed nature. Numerous ad hoc routing
algorithms exist to allow networking under various
conditions. They can be separated into three groups,
proactive, reactive and hybrid algorithms. In proactive
routing algorithms maintain continuously updated state of
the network and the existing routes; however, in some cases
it may generate an unnecessary overhead to maintain the
routing tables and then may be better to create routes only
on demand, the case of reactive routing algorithms. In
reactive routing algorithms require time-consuming route
creations that may delay the actual transmission of the data
when sources have no path towards their destination and
then, in this case may be better to use a proactive routing
algorithm. In hybrid protocols try to profit the advantages of
both reactive and proactive protocols and combine their
basic properties into one. These protocols have the potential
to provide higher scalability than pure reactive or proactive
protocols thanks to the collaboration between nodes with
close proximity to work together and therefore reduce the
route discovery overhead Multiple routing protocols have
been developed for MANETs.In proactive\ protocols, every
node maintains the network topology information in the

form of routing tables by periodically exchanging routing
information. Routing\ information is generally flooded in the
whole network. Whenever a node requires a path to a
destination, it runs an appropriate path finding algorithm on
the topology information it maintains. The destination
sequenced distance vector routing (DSDV) protocol, and
wireless routing protocol (WRP) are some examples for the
proactive protocols.Reactive protocols do not maintain the
network topology information. They obtain the necessary
path when it is required, by using a connection
establishment process. Hence these protocols do not
exchange routing information periodically. The dynamic
source routing (DSR), Ad-hoc on-de source routing (DSR),
Ad-hoc on-demand distance vector routing (AODV), and
temporally ordered routing (TORA) algorithm are some
examples for the protocols that belong to this category. In
proactive routing algorithms maintain continuously updated
state of the network and the existing routes; however, in
some cases it may generate an unnecessary overhead to
maintain the routing tables and then may be better to create
routes only on demand, the case of reactive routing
algorithms. In reactive routing algorithms require time-
consuming route creations that may delay the actual
transmission of the data when sources have no path towards
their destination and then, in this case may be better to use a
proactive routing algorithm. In hybrid protocols try to profit
the advantages of both reactive and proactive protocols and
combine their basic properties into one.

II. DISTRIBUTED BELLMAN-FORD

The DBF algorithm was developed originally to support
routing in the ARPANET. A version of it is known as
Routing Internet Protocol (RIP)[1] and is still being used
today to support routing in some Internet domains. It is a
table-driven routing protoco1, that is, each router constantly
maintains an up-to-date routing table with information on
how to reach all possible destinations in the network. For
each entry the next router to reach the destination and a
metric to the destination are recorded. The metric can be hop
distance, total delay, or cost of sending the message. Each
node in the network begins by informing its neighbors about
its distance to all other nodes. The receiving nodes extract
this information and modify their routing table if any route
measure has changed. For instance, a different route may
have been chosen as the best route or the metric to the
destination may have been altered. The node uses the
following formula to calculate the best route: D(i, j) = min
[d(i, k) + D(k, j)] where D(i,j) is the metric on the
―shortestǁ path from node i to node j , d(i, k) is the cost of
traversing directly from node i to node k, and k is one of the

Vikas Kumar Rana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1880-1883

www.ijcsit.com 1880

neighbors of node i. After recomputing the metrics, nodes
pass their own distance information to their neighbor nodes
again. After a while, all nodes/routers in the network have a
consistent routing table to all other nodes. This protocol
does not scale well to large networks due to a number of
reasons. One is the so-called count-to-infinity problem. In
unfavorable circumstances, it takes up to N iterations to
detect the fact that a node is disconnected, where N is the
number of nodes in the network [2]. Another problem is the
increase of route update overhead with mobility. RIP uses
time triggered (periodic, about a 30-s interval) and event-
triggered (link changes or router failures) routing updates.
Mobility can be expressed as rate of link changes and/or
router failures. In a mobile network environment, event-
triggered routing updates tend to outnumber time-triggered
ones, leading to excessive overhead and inefficient usage of
the limited wireless bandwidth.

III. DIFFIE-HELLMAN TWO-PARTY AGREEMENT(DH)
This basic protocol, proposed in a landmark paper [3],
allows two nodes to build a common key. The principal of
this protocol is simple: the two involved nodes, M1 and M2,

send one another a partial key to be used for the common key computation.
M1 generates a random number r1 (1 ≤ r1 ≤ p), and sends αr1
to M2, such that α and p are constants known by each node.
On the other hand, M2 generates a random number r2, and
sends αr2 to M1. Thereby, each node could compute the
common key, which is αr1*r2 This solution is based on
discrete logarithmic arithmetic, and also relies on the
agreement on the parameters α and p between the two nodes.
Although it is simple and limited to two nodes’ common key
establishment, this protocol was used to design more
sophisticated protocols, as we will see later. Example .[5]
This protocol uses exponentiation to share a secret between
two parties, Alice and Bob. The protocol involves an
initiator, Alice, and a responder, Bob. We use the common
notation A →B : M to stand for “A sends message M to B”.
Raising message M to the power of exponent X is denoted
by (M)X. There is a public term denoted by g, which will be
the base of our exponentiations. We represent the product of
exponents by using the symbol *. Nonces are represented by
NX, denoting a nonce created by principal X.The protocol
description is as follows.
1. A → B : A
Alice sends her name to Bob.
2. A → B : B
Alice sends Bob’s name to Bob.
3. A → B : gN

A

Alice creates a new nonce NA and sends to Bob.
4. B →A : B
Bob sends his name to Alice.
5. B → A : A
Bob sends Alice’s name to herself.
6. B →A : gN

B

Bob creates a new nonce NB and sends gN
B Alice.

Intuitively, when Bob receives gN
A , he raises it to the NB, to

obtain gN
A

N
B= gN

A*
N

B.Likewise, when Alice receives gN
B ,

she raise it to the NA, to obtain gN
B

N
A= gN

B*
N

A . And due to
the commutativity of the symbol *, they know the
equivalence gN

B*
N

A= gN
A*

N
B. An observer of the exchange

who does not know NA nor NB cannot find gN
A*

N
B , and so

Alice and Bob have computed a shared secret, i.e.,gN
B*

N
A .

Of course, the attacker can always learn a term g(N
A*

N
1) ,

where NI is a nonce created by the intruder, even by using a
passive intruder model. The point is that he can also make
believe to Alice that g(N

A*
N

1
) is the shared key she is sharing

with Bob. This is usually modelled by adding to the protocol
a new message where Alice sends to Bob some secret,
encrypted by g(N

A*
N

1
). Existence of an attack is expressed by

saying that the attacker can obtain this secret. For the sake of
simplicity and because we are focused in AC-theories, we
omit this last part of the protocol and concentrate just in
whether the intruder can learn XN

A for some exponentiation
X, where XN

A is the key calculated by Alice. In a rule-based
representation of this protocol, parts of a received message
whose make-up cannot be verified by a principal are
represented by variables. That is, since nonces are known
only to the principal who generated it, and retrieving the
nonce would require the computation of a discrete
logarithm, we say that Bob receives a variable X of a generic
message sort instead of gN

A and similarly for Alice. The
symbol * is associative and commutative and satisfies the
following additional property with respect to exponentiation:
(XY)Z =X(Y*Z) .The intruder abilities to create, manipulate,
and delete messages according to the Dolev-Yao attackers
capabilities [6] are described as follows, where we use the
special symbol _ƐṮ to represent that the intruder knows
something, and I denotes the intruder’s name:
M1єṮ,M2 єṮ X єṮ,YєṮ
(M1*M2)єṮ XYєṮ N1єṮ
 The intruder also knows the names of all the principals and
the base g.
 If we ask ourselves whether the intruder can learn a
message XN

A for some variable X received by Alice
(representing the nonce that Alice receives from Bob),
 the answer is yes for an infinite set of instances for X, e.g.,
gN

I , (g
N

I)
N r

I , ((g
N

I)
Nr

I)
Nrr

I ,,, etc. If we take instantiation X
→ gN

I, the intruder can learn the message g(N
A
→N

I
) by means

of the following sequence of actions (only the three first
steps are necessary but we need Alice to complete the
protocol in order to believe she is sharing a shared key with
Bob:
1. A→B : A
Alice sends her name to Bob, but it is intercepted by the
intruder.
2. A→B : B
Alice sends Bob’s name to Bob, but it is intercepted by the
intruder.
3. A→B : gN

A
Alice creates a new nonce NA and sends to Bob, but it is
intercepted by the intruder.
4. I→A : B
The intruder sends Bob’s name to Alice.
5. I→A : A
The intruder sends Alice’s name to Alice.
6. I→A : gN

I

The intruder creates a new nonce NI and sends g(N

A
→N

I
) to

Alice.

Vikas Kumar Rana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1880-1883

www.ijcsit.com 1881

The intruder is able to learn the message just by raising the
intercepted message gN

A to NI . Note that the intruder does
not need to know NA, since he gets the desired effect thanks
to the equational properties for exponentiation and product
of exponents described above.

IV. GENERAL DIFFIE-HELLMAN (GDH)
Steiner et al. [4] proposed a n-party generalization of the
basic two-party DH protocol (described before). The new
protocol consists of n rounds, allowing n nodes to establish a
common key. In the first n – 1 rounds contributions are
collected from each node. In the first round, M1 generates r1
and computes αr1, which it sends to M2. In the second step
M2 generates r2, computes αr2 and sends it to M3, along with
αr1 and αr1×r2. This latter sends to M4 (after making the
required computations) the third-round partial factors, i.e.,
αr1×r2, αr1×r3, αr2×r3, as well as the third-round partial key
αr1×r2×r3. This process continues for each Mi (i < n). Upon the
(n – 1)th round, the collector node Mn receives the (n – 1)th
round partial factors, and the (n – 1)th round partial key, then
it generates its random number and computes the final key
K. In the last round, node Mn sends each Mi the appropriate
(n)th round partial factor, i.e.

 K=α(πn

j
=1r

j
)/r

j

Consequently, each node uses its random number to
compute the common key K. Note that partial factors are
used to avoid sending the final resulted key during the last
round. Also note that the (n – 1)th round requires n – 1
operations (sending the partial factor to each node), which
makes the computational complexity of the solution 0 (2 ×
(n – 1)).
Even though it uses a collector, this solution is contributory,
since each node contributes to the key computation with the
random number it generates. Nevertheless, the major
drawback of this solution is the important overhead, due to
the message size rising from round to round. This can also
cause a problem with scalability

V. PROPOSED WORK:

Generally we imply security on all the nodes of the network.
But this causes wastage of time and cost. This paper

proposes that first we have to find out the shortest path and
then imply the security in multicast routing. The routing is
done with the help of GDH and the Encryption and
Decryption of data is done with the help of a new
Cryptographic technique that i have proposed in this
paper.This proposed scheme will improve the performance
of the network such as delay and packet delivery ratio than
traditional routing algorithms:
� A network is randomly created
� Then the shortest distance from source to destination is
found with the help of bellmen ford algorithm
� Apply GDH on each node starting from source to
destination node on the shortest path calculated.
� Apply Encryption and decryption scheme over the DATA
from source to destination node.
Encryption: Decryption:
DATA + N = A; D – N = X;
A * N = B; X * N = Y;
B - N = C; Y + N = Z;
C / N = D; C/N=DATA;
where N=GDH key;
D=encrypted data

VI. EXPERIMENT RESULTS AND ANALYSIS:

In the last we can see that by applying this algorithm first of
all we have found the shortest path between the source and
destination node in a generalized network and then applied
the security over it with the help of GDH and then finally
did the encryption and decryption of the whole data that is to
be sent over the network.

Vikas Kumar Rana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1880-1883

www.ijcsit.com 1882

VII. CONCLUSION:
Case I: If there is no intermediate node in between the
source and the destination node. Then their is no way that
the key shared between the two nodes gets intended and the
data transfer is secure. Case II: if there are some
intermediate node in between the source and the destination
node i.e along the path between the source and the
destination node and if some maliaous node and if some
maliaous node intrudes the key and change it and then
forwards it to the destined node waiting for the key to be
shared, the destined node will not be able to know whether
the key coming to be shared is either intruded or not and
take it as a key that is not infected from any malicious
node(intruder) .

VIII. FUTURE WORK:-
If Case II occurs then the prime target is to detect the
malicious node along the whole path and to make the path
secure so that data can be transferred securely over the path
without any intrusion.

REFERENCES
[1] G. Malkin, "RIP Version 2 - Carrying Additional information,"

Internet Draft, drah-ietf-ripv2-protocol-v2-05.txt, Jun. 1998, work in
progress

[2] A.S. Tanenbaum, Computer Networks, 3rd ed., Upper Saddle River,
NJ: Prentice Hall. Mar. 1996.

[3] W. Diffie and M. E. Hellman, "New Directions in
Cryptography,”IEEE Trans. Info Theory, vol. IT-22, no. 6, 1976, pp.
644–54

[4] M. Steiner, G. Tsudik, and M. Waidner, "Diffie Hellman Key
Distribution Extended to Group Communication,” ACM Conf. Comp.
and Commun. Security, 1996

[5] Santiago Escobar, Joe Hendrix, Catherine Meadows, and Jos´e
Meseguer, "Diffie-Hellman Cryptographic Reasoning in the Maude-
NRL Protocol Analyzer”

[6] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transaction on Information Theory

Vikas Kumar Rana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1880-1883

www.ijcsit.com 1883

